Reaction Processes of Vanadium Dichloride Oxide and Vanadium Trichloride with Oxygen

Akimasa Yajima, Ryoko Matsuzaki, and Yuzo Saeki*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 227
(Received May 11, 1979)

The products formed by the heating of VCl₂O in an oxygen stream at various temperatures were examined by chemical and X-ray analysis. The reaction products between VCl₃ and oxygen were examined in the same manner. The reaction process between VCl₂O and oxygen may be represented as follows: VCl₂O reacts with oxygen above ca. 170 °C to form V₂O₅ and VCl₃O, 12VCl₂O(s)+3O₂(g) \rightarrow 2V₂O₅(s)+8VCl₃O(g), and this reaction is accompanied by the reaction, 4VCl₂O(s)+3O₂(g) \rightarrow 2V₂O₅(s)+4Cl₂(g). The reaction process between VCl₃ and oxygen may be represented as follows: VCl₃ reacts with oxygen above ca. 100 °C to form VCl₃O, 2VCl₃(s)+O₂(g) \rightarrow 2VCl₃O(g), and this reaction is accompanied by the reaction, 2VCl₃(s)+O₂(g) \rightarrow 2VCl₂O(s)+Cl₂(g).

Vanadium trichloride oxide (VCl₃O) which is dissolved in crude titanium tetrachloride (TiCl₄) prepared by the chlorination of titanium ores is commercially removed as a non-volatile vanadium-containing precipitate by bubbling hydrogen sulfide through the crude TiCl₄. The present authors¹) have previously reported that the vanadium-containing precipitate formed by the reaction between VCl₃O and hydrogen sulfide is a mixture of vanadium dichloride oxide (VCl₂O) and a small amount of vanadium trichloride (VCl₃). From the view point of waste reclamation, it is necessary to understand the chemical process for the preparation of divanadium pentaoxide (V₂O₅) and chlorine by the oxidation of the mixture of VCl₂O and VCl₃ with oxygen (air).

There has been no report on the reaction process between VCl_2O and oxygen. Regarding the reaction between VCl_3 and oxygen, Ruff and Lickfett²) have reported that VCl_3O is formed by heating VCl_3 at $ca.500-600\,^{\circ}C$ in an oxygen stream. Lamprey and Forsyth³) have briefly described that the reaction, $VCl_3+1/2O_2\rightarrow VCl_3O$, mainly occurs above 250 °C on heating VCl_3 in air. Pechkovskii and Vorob'ev⁴) have reported that the reaction between VCl_3 and oxygen to form VCl_3O mainly occurs above 200 °C on heating VCl_3 in an oxygen stream, and that onyl a small part of the VCl_3 is oxidized to V_2O_5 .

In this paper, the reaction processes of VCl₂O and VCl₃ with oxygen will be revealed.

Experimental

The VCl₂O used was prepared from VCl₃, divanadium trioxide (V₂O₃), and VCl₃O by the method based on the literature.⁵⁾ Chemical analysis of the VCl₂O obtained gave V, 37.0; Cl, 51.4% (Calcd for VCl₂O: V, 36.96; Cl, 51.44%); it was confirmed to be VCl₂O⁶⁾ by X-ray analysis. VCl₃ was obtained by the thermal decomposition of VCl₄, which was prepared by the reaction between vanadium (V, 99.8% up) and chlorine at 500 °C,⁷⁾ at 180 °C in an argon atmosphere.⁸⁾ The chemical analysis gave V, 32.4; Cl, 67.6% (Calcd for VCl₃: V, 32.38; Cl, 67.62%); it was confirmed to be VCl₃⁹⁾ by X-ray analysis. The oxygen was dried by passing it through conc. sulfuric acid and over diphosphorous pentaoxide.

The sensitivity of the quartz helix used for thermogravimetry (TG) was approximately 67 mm/g. The sample (0.15 g)

was heated at a rate of 2.5 °C/min and the flow-rate of argon or oxygen was maintained at 50 cm³/min.

X-Ray analysis of the solid sample was performed using Ni-filtered Cu radiation. The sample chamber of the diffractometer was maintained under dry nitrogen atmosphere to prevent the contamination of the sample with moisture in air during the irradiation.

The products obtained by heating VCl_2O and VCl_3 in an oxygen stream at various temperatures were examined by the following procedures: The sample (1.0 g) in a quartz boat (60 mm length, 13 mm width, 7 mm depth) was placed in a straight reaction tube (16 mm i. d.) with a water-cooled condenser. Oxygen was introduced into the reaction tube at a flow-rate of 50 cm³/min. The sample part was then placed in the centre of an electric furnace (300 mm in heating length) maintained at a specified temperature for a specified period. The temperature of the sample part was controlled to within ± 2 °C.

The liquid product (VCl₃O) was collected in a trap cooled in solid carbon dioxide through the condenser. The chlorine formed was absorbed in KI solution through the trap and determined by iodometry. The total amount of chlorine formed during the reaction was determined by adding the above value and the amount of chlorine dissolved in the liquid product in the solid carbon dioxide trap.¹⁰⁾ The determination of the amount of chlorine dissolved in the liquid product will be described later.

Chemical analysis of the solid and liquid products was performed as follows: The vanadium content in the sample was determined by chelatometric titration, 11) while the chlorine content was gravimetrically determined as AgCl, after dissolving the sample in dilute nitric acid.

The amount of chlorine dissolved in the liquid product in the solid carbon dioxide trap was determined as follows: After the reaction was over, the liquid product was allowed to warm to room temperature in an argon atmosphere in order to liberate the chlorine from the liquid product. The liberated chlorine was absorbed in NaOH solution. A small amount of the liquid product which vaporized during the above procedure was also absorbed in the NaOH solution. The total amount of chlorine in the NaOH solution was gravimetrically determined as AgCl and the vanadium content in the NaOH solution was also determined by chelatometric titration. From the vanadium content, the amount of the liquid product absorbed in the NaOH solution was calculated. The amount of chlorine dissolved in the liquid product was calculated by subtracting the amount of chlorine corresponding to the liquid product absorbed in the NaOH solution from the total amount of chlorine in the NaOH solution.

The total amount of liquid product formed was corrected by adding the amount of liquid product absorbed in the NaOH solution to the amount of liquid product in the trap.

Throughout this work, the chlorides and chloride oxides of vanadium were handled in an argon atmosphere or in vacuo to prevent any contamination with moisture in air.

Results and Discussion

Reaction Process between Vanadium Dichloride Oxide and Oxygen. It has been reported that on heating VCl_2O in an inert atmosphere, the disproportionation occurs above $300 \,^{\circ}C^{12}$ or $330 \,^{\circ}C$, 4) according to the reaction, $2VCl_2O(s) \rightarrow VClO(s) + VCl_3O(g)$.

Prior to the examination of the reaction between VCl₂O and oxygen, the behavior of VCl₂O on heating in an argon stream was examined. The TG curve showed that VCl₂O lost weight continuously above ca. 295 °C and the weight reached a constant value at ca. 380 °C. The sample heated up to 380 °C was shown to be VClO¹³⁾ by X-ray analysis. The weight loss at 380 °C was 62.9%. This value was in good agreement with the calculated value, 62.86%, based on the disproportionation of VCl₂O. The gaseous product was confirmed to be VCl₃O by chemical analysis of the product obtained by heating VCl₂O (1.0 g) in an argon stream at 370 °C for 3 h. From these results, it is confirmed that VCl₂O disproportionates above ca. 295 °C according to the reaction, $2VCl_2O(s) \rightarrow VClO(s)$ $+VCl_3O(g)$.

The TG curve of VCl₂O in an oxygen stream showed that VCl₂O reacted appreciably with oxygen above ca. 180 °C before disproportionating. To obtain more detailed information on the reaction between VCl₂O and oxygen, the products formed by heating VCl₂O at various temperatures for 0.5—3 h in an oxygen stream were examined by X-ray and chemical analysis.

At 160 °C, no reaction product was observed. The reaction products obtained at various temperatures

above 170 °C and their weight percentages to the initial VCl₂O were determined by chemical and X-ray analysis.^{6,14,15)} The results are summarized in Table 1.

The most stable oxide phase of vanadium under the conditions of this work is V_2O_5 . $^{16)}$ Trivanadium heptaoxide (V_3O_7) was not formed below 240 °C as shown in Table 1, but a small amount of V_3O_7 was formed in addition to V_2O_5 above 260 °C. As shown in Table 1, the reaction between VCl₂O and oxygen proceeded markedly above 260 °C to form a large amount of gaseous VCl₃O. Consequently, the reaction between VCl₂O and oxygen has been thought to proceed under a low oxygen concentration to form V_3O_7 in addition to V_2O_5 . The solid products obtained by heating VCl₂O (1.0 g) at 290 °C under various flowrates of oxygen for 1 h were examined. The results are shown in Table 2.

Table 2. Solid products between VCl₂O and oxygen at various flow-rates of oxygen

O ₂ flow-rate/ cm ³ min ⁻¹	Solid pro	oduct/%	Unreacted
cm³ min−¹	V_2O_5	V_3O_7	$\mathrm{VCl_2O}/\%$
50	66	3	31
100	71	1	28
200	73		27

From the results, it was observed that V_3O_7 was not formed under a high flow-rate of oxygen. This confirms the above consideration on the formation of V_3O_7 .

The experimental results for the reaction products between VCl_2O and oxygen at various temperatures, shown in Table 1, indicated that V_2O_5 and VCl_3O were the main products. This fact was considered to indicate that the main reaction on heating VCl_2O in an oxygen stream was the reaction,

 $12VCl_2O(s) + 3O_2(g) \longrightarrow 2V_2O_5(s) + 8VCl_3O(g).$ (1)

Table 1. Reaction products between VCl₂O and oxygen at various temperatures

			Pro	duct/%		
Temp/°C	Reaction time/h	In th	e boat	Outsic heatin	le the g zone	Unreacted VCl ₂ O/%
		$\widetilde{\mathrm{V_2O_5}}$	V_3O_7	VCl ₃ O	Cl_2	
170	3	<1	-	0.4	< 0.1	>99
200	3	1		2.8	< 0.1	96
220	3	7		21.6	0.9	72
	(0.5	4		12.6	0.5	83
240	1	7	-	23.6	8.0	69
	3	15		48.9	1.7	38
	(0.5	8	<1	26.3	0.9	66
260	1	14	<1	46.0	1.6	41
	3	22	1	75.7	2.6	3
	(0.5	10	<1	33.7	1.1	57
280	1	19	<1	63.4	2.3	19
	3	23	<1	77.6	2.7	<1
	(0.5	15	<1	50.5	1.8	35
290	1	21	ì	70.8	2.5	10
	2	23	1	78.4	2.8	0

Table 3. Reaction products between VCl₃ and oxygen at various temperatures

Temp/°C	Reaction time/h	In the boat	Outside the heating zone		Unreacted $VCl_3/\%$
		VCl_2O	$\widetilde{\mathrm{VCl_3O}}$	$\widetilde{\operatorname{Cl}}_2$	
100	6	<1	6.8	< 0.1	93
110	6	<1	14.3	0.2	86
130 {	3	<1	19.4	0.2	81
	6	1	37.5	0.3	64
150	1	<1	17.2	0.1	83
	3	1	43.8	0.3	58
	6	2	75.7	0.5	29
160	1	<1	31.0	0.2	70
	3	2	87.4	0.6	17
	6	3	105.2	0.8	0

The possible reactions giving the chlorine (in Table 1) were considered to be the reaction,

$$4VCl_2O(s) + 3O_2(g) \longrightarrow 2V_2O_5(s) + 4Cl_2(g),$$
 (2) and the reaction between gaseous VCl_3O formed by Reaction 1 and oxygen,

$$4VCl3O(g) + 3O2(g) \longrightarrow 2V2O5(s) + 6Cl2(g).$$
 (3)

As reported in the previous report,17) Reaction 3 does not proceed below 400 °C. Consequently, the formation of a small amount of chlorine obtained by heating VCl₂O in an oxygen stream was considered to be due to Reaction 2.

Based on this assumption, the amount of V₂O₅ formed by Reaction 2 was calculated from the amount of chlorine formed (in Table 1). The molar ratio of the amount of VCl₃O to the amount of V₂O₅ obtained by subtracting the amount of V₂O₅ formed by Reaction 2 from the total amount of V_2O_5 formed was calculated to be approximately 4:1. In this calculation, the amount of V₃O₇ formed was converted into that of V₂O₅ on the assumption that V₃O₇ was oxidized to V₂O₅. These results confirmed that the main reaction which occurred by heating VCl₂O in an oxygen stream was Reaction 1 and that this reaction was accompanied by Reaction 2.

The above-mentioned results reveal that VCl₂O reacts with oxygen above ca. 170 °C according to Reaction 1 and that this reaction is accompanied by Reaction 2. As a result, V₂O₅ (under a low oxygen concentration, V₃O₇ is formed in addition to V₂O₅), VCl₃O, and a small amount of chlorine are formed.

Reaction Process between Vanadium Trichloride and Oxygen. On heating VCl₃ in an argon stream, the VCl₃ disproportionates above ca. 350 °C according to the reaction, $2VCl_3(s) \rightarrow VCl_2(s) + VCl_4(g)$, as previously reported by the present authors.¹⁷⁾

The TG curve showed that VCl₃ reacted appreciably with oxygen above ca. 110 °C before disproportionating. To obtain more detailed information on the reaction between VCl₃ and oxygen, the products formed by heating VCl₃ at various temperatures for 1—6 h in an oxygen stream were examined.

At 90 °C, no reaction product was observed. The reaction products obtained at various temperatures above 100 °C and their weight percentages to the initial VCl3 were determined by chemical and X-ray analysis. 6,9) The results are summarized in Table 3.

The experimental results shown in Table 3 indicated that VCl₃O was the main product by the reaction between VCl₃ and oxygen. This fact was considered to indicate that the main reaction on heating VCl₃ in an oxygen stream was the reaction,

$$2VCl_3(s) + O_2(g) \longrightarrow 2VCl_3O(g).$$
 (4)

Small amounts of VCl₂O and chlorine were formed in addition to VCl₃O. The molar ratio of the amount of VCl₂O to the amount of chlorine was calculated to be approximately 2:1. This fact was considered to indicate that the reaction,

$$2VCl_3(s) + O_2(g) \longrightarrow 2VCl_2O(s) + Cl_2(g),$$
 (5) occurred in addition to Reaction 4.

Based on the assumption that the formation of VCl₂O and chlorine was due to Reaction 5, the amount of VCl₃ consumed by Reaction 5 was calculated from the amount of chlorine formed (in Table 3). The molar ratio of the amount of VCl₃O formed to the amount of the reacted VCl₃ obtained by subtracting the amount of VCl₃ consumed by Reaction 5 from the total amount of the reacted VCl₃ was calculated to be approximately 1:1. These results confirmed that the main reaction which occurred by heating VCl₃ in an oxygen stream was Reaction 4 and that this reaction was accompanied by Reaction 5.

The above-mentioned results reveal that VCl₃ reacts with oxygen above ca. 100 °C according to Reaction 4 and that this reaction is accompanied by Reaction 5. As a result, VCl₃O and small amounts of VCl₂O and chlorine are formed.

As mentioned above, Pechkovskii and Vorob'ev4) have reported that on heating VCl₃ in an oxygen stream, a small part of the VCl₃ is oxidized to V₂O₅. From the results of this work, it is probable that the V₂O₅ is formed by the reaction of VCl₂O, formed by Reaction 5, with oxygen.

References

1) A. Yajima, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 51, 1098 (1978).

- 2) O. Ruff and H. Lickfett, Ber., 44, 506 (1911).
- 3) H. Lamprey and P. F. Forsyth, Talanta, 7, 264 (1961).
- 4) V. V. Pechkovskii and N. I. Vorob'ev, Russ. J. Inorg. Chem., 10, 779 (1965).
 - 5) H. Oppermann, Z. Anorg. Allg. Chem., 351, 113 (1967).
 6) R. J. Sime, Z. Kristallogr., 124, 238 (1967).
- 7) C. Starr, F. Bitter, and A. R. Kaufmann, Phys. Rev., **58**, 977 (1940).
- 8) R. E. McCarley and J W. Roddy, Inorg. Chem., 3, 60 (1964).
 - 9) JCPDS, Powder Diffraction File, 15-382.
- 10) F. E. Brown and J. E. Snyder, J. Am. Chem. Soc., 47,

- 2671 (1925).
- 11) J. Krtil, Z. Anal. Chem., 219, 412 (1965).
- 12) P. Ehrlich and H. J. Seifert, Z. Anorg. Allg. Chem., **301**, 282 (1959).
- 13) JCPDS, Powder Diffraction File, 23-1472.
- ASTM, X-Ray Powder Data File, 9-387.
- 15) JCPDS, Powder Diffraction File, 20-1378.
- 16) H. Endo, M. Wakihara, and M. Taniguchi, Chem. Lett., **1974**, 905.
- 17) A. Yajima, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 52, 3292 (1979).